skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Paglione, Timothy_A_D"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT We present evidence for $$\gamma$$-ray emission from a stacked population of 39 high-latitude globular clusters (GCs) not detected in the Fermi Point Source Catalogue, likely attributable to populations of millisecond pulsars within them. In this work, we use 13 yr of data collected by the Large Area Telescope aboard the Fermi Gamma-Ray Space Telescope to search for a cumulative signal from undetected GCs and compared them to control fields (CFs), selected to match the celestial distribution of the target clusters so as to distinguish the $$\gamma$$-ray signal from background emission. The joint likelihood distribution of the GCs has a significant separation ($$\sim 4\sigma$$) from that of the CFs. We also investigate correlations between detected cluster luminosities and other cluster properties such as distance, the number of millisecond pulsars associated with each cluster, and stellar encounter rate but find no significant relationships. 
    more » « less
  2. ABSTRACT Flares from magnetically active dwarf stars should produce relativistic particles capable of creating γ-rays. So far, the only isolated main-sequence star besides the Sun to have been detected in γ-rays is TVLM 513−46546. Detecting γ-ray flares from more dwarf stars can improve our understanding of their magnetospheric properties, and could also indicate a diminished likelihood of their planets’ habitability. In this work, we stack data from the Fermi Gamma-ray Space Telescope during a large number of events identified from optical and X-ray flare surveys. We report an upper limit of γ-ray emission from the population of flare stars. Stacking results towards control positions are consistent with a non-detection. We compare these results to observed solar γ-ray flares and against a model of emission from neutral pion decay. The upper limit is consistent with solar flares when scaled to the flare energies and distances of the target stars. As with solar flares, the neutral pion decay mechanism for γ-ray production is also consistent with these results. 
    more » « less